Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.14.549076

ABSTRACT

COVID-19 and influenza both cause enormous disease burdens, and vaccines are the primary measures for their control. Since these viral diseases are transmitted through the mucosal surface of the respiratory tract, developing an effective and convenient mucosal vaccine should be a high priority. We previously reported a recombinant vesicular stomatitis virus (rVSV)-based bivalent vaccine (v-EM2/SP{Delta}C1Delta) that protects animals from both SARS-CoV-2 and influenza viruses via intramuscular and intranasal immunization. Here, we further investigated the immune response induced by oral immunization with this vaccine and its protective efficacy in mice. The results demonstrated that the oral cavity delivery, like the intranasal route, elicited strong and protective systemic immune responses against SARS-CoV-2 and influenza A virus. This included high levels of neutralizing antibodies (NAbs) against SARS-CoV-2, as well as strong anti-SARS-CoV-2 spike protein (SP) antibody-dependent cellular cytotoxicity (ADCC) and anti-influenza M2 ADCC responses in mice sera. Furthermore, it provided efficient protection against challenge with influenza H1N1 virus in a mouse model, with a 100% survival rate and a significant low lung viral load of influenza virus. All these findings provide substantial evidence for the effectiveness of oral immunization with the rVSV bivalent vaccine.


Subject(s)
Vesicular Stomatitis , Drug-Related Side Effects and Adverse Reactions , COVID-19 , Disease
2.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202301.0388.v1

ABSTRACT

Abstract: Over the years, several distinct pathogenic coronaviruses have emerged, including the pandemic SARS-CoV-2 which is difficult to curtail despite the availability of licensed vaccines. The difficulty in managing SARS-CoV-2 is linked to changes in the variants’ proteins, especially in the spike protein (S) used for viral entry. These mutations, especially in the S, enable the virus to evade the immune responses induced by natural infection or vaccination. However, some parts of the SP in the S1 subunit and the S2 subunit are considered conserved among coronaviruses. In this review, we will discuss the epitopes in the SARS-CoV-2 S1 and S2 subunit proteins that have been demonstrated by various studies to be conserved among coronaviruses and may be immunogenic for the development of vaccine. Considering the higher conservancy of the S2, we will further discuss the likely challenges that could limit the S2 subunit from inducing robust immune responses and the promising approaches to increase their immunogenicity.


Subject(s)
COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.12.503750

ABSTRACT

Entry of enveloped viruses in host cells requires the fusion of the viral and host cell membranes, a process that is facilitated by viral fusion proteins protruding from the viral envelope. For fusion, viral fusion proteins need to be triggered by host factors and for some viruses, such as Ebola virus (EBOV) and Lassa fever virus, this event occurs inside endosomes and/or lysosomes. Consequently, these late-penetrating viruses must be internalized and delivered to entry-conducive intracellular vesicles. Because endocytosis and vesicular trafficking are tightly regulated cellular processes, late penetrating viruses also depend on specific host factors, such as signaling molecules, for efficient viral delivery to the site of fusion, suggesting that these could be targeted for antiviral therapy. In this study, we investigated a role for sphingosine kinases (SKs) in viral entry and found that chemical inhibition of sphingosine kinase 1 (SK1) and/or SK2 and knockdown of SK1 or SK2, inhibited entry of EBOV into host cells. Mechanistically, inhibition of SK1 and/or SK2 prevented EBOV from reaching late-endosomes and lysosomes that are positive for the EBOV receptor, Niemann Pick C1 (NPC1). Furthermore, we present evidence that suggests the trafficking defect caused by SK1/2 inhibition occurs independently of S1P signaling through cell-surface S1PRs. Lastly, we found that chemical inhibition of SKs prevents entry of other late-penetrating viruses, including arenaviruses and coronaviruses, in addition to inhibiting infection by replication competent EBOV and SARS-CoV-2 in Huh7.5 cells. In sum, our results highlight an important role played by SKs in endocytic trafficking which can be targeted to inhibit entry of late-penetrating viruses. SK inhibitors could serve as a starting point for the development of broad-spectrum antiviral therapeutics.


Subject(s)
Fever , Hemorrhagic Fever, Ebola
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.14.472657

ABSTRACT

COVID-19 and influenza are both highly contagious respiratory diseases with a wide range of severe symptoms and cause great disease burdens globally. It has become very urgent and important to develop a bivalent vaccine that is able to target these two infectious diseases simultaneously. In this study, we generated three attenuated replicating recombinant VSV (rVSV) vaccine candidates. These rVSV-based vaccines co-express SARS-CoV-2 Delta variant spike protein (SP) or the receptor binding domain (RBD) and four copies of the highly conserved M2 ectodomain (M2e) of influenza A fused with the Ebola glycoprotein DC-targeting/activation domain. Animal studies have shown that immunization with these bivalent rVSV vaccines induced efficient but variable levels of humoral and cell-mediated immune responses against both SARS-CoV-2 and influenza M2e protein. Significantly, our vaccine candidates induced production of high levels of neutralizing antibodies that protected cells against SARS-CoV-2 Delta and other SP-pseudovirus infections in culture. Furthermore, vaccination with the bivalent VSV vaccine via either intramuscular or intranasal route efficiently protected mice from the lethal challenge of H1N1 and H3N2 influenza viruses and significantly reduced viral load in the lungs. These studies provide convincing evidence for the high efficacy of this bivalent vaccine to prevent influenza replication and initiate robust immune responses against SARS-CoV-2 Delta variants. Further investigation of its efficacy to protect against SARS-CoV-2 Delta variants will provide substantial evidence for new avenues to control two contagious respiratory infections, COVID-19 and influenza.


Subject(s)
Respiratory Tract Diseases , Poult Enteritis Mortality Syndrome , Vesicular Stomatitis , Respiratory Tract Infections , COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.02.470987

ABSTRACT

Increasing cases of SARS-CoV-2 breakthrough infections from immunization with predominantly spike protein based COVID-19 vaccines highlight the need for alternative vaccines using different platforms and/or antigens. In this study, we expressed SARS-CoV-2 spike and nucleocapsid proteins in a novel vaccinia virus ACAM2000 platform (rACAM2000). Following a single intramuscular immunization, the rACAM2000 co-expressing the spike and nucleocapsid proteins induced significantly improved protection against SARS-CoV-2 challenge in comparison to rACAM2000 expressing the individual proteins in a hamster model, as shown by reduced weight loss and quicker recovery time. The protection was associated with reduced viral loads, increased neutralizing antibody titre and reduced neutrophil-to-lymphocyte ratio. Thus, our study demonstrates that the rACAM2000 expressing a combination of the spike and nucleocapsid antigens is a promising COVID-19 vaccine candidate and further studies will investigate if the rACAM2000 vaccine candidate can induce a long lasting immunity against infection of SARS-CoV-2 variants of concern.


Subject(s)
Severe Acute Respiratory Syndrome , Breakthrough Pain , Weight Loss , COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.12.448196

ABSTRACT

The emergence of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resultant pandemic of coronavirus disease 2019 (COVID-19) has led to over one hundred million confirmed infections, greater than three million deaths, and severe economic and social disruption. Animal models of SARS-CoV-2 are critical tools for the pre-clinical evaluation of antivirals, vaccines, and candidate therapeutics currently under urgent development to curb COVID-19-associated morbidity and mortality. The golden (Syrian) hamster model of SARS-CoV-2 infection recapitulates key characteristics of severe COVID-19, including high-titer viral replication in the upper and lower respiratory tract and the development of pathogenic lesions in the lungs. In this work we examined the influence of the route of exposure, sex, and age on SARS-CoV-2 pathogenesis in golden hamsters. We report that delivery of SARS-CoV-2 primarily to the nasal passages (low-volume intranasal), the upper and lower respiratory tract (high-volume intranasal), or the digestive tract (intragastric) results in comparable viral titers in the lung tissue and similar levels of viral shedding during acute infection. However, low-volume intranasal exposure results in milder weight loss during acute infection while intragastric exposure leads to a diminished capacity to regain body weight following the period of acute illness. Further, we examined both sex and age differences in response to SARS-CoV-2 infection. Male hamsters, and to a greater extent older male hamsters, display an impaired capacity to recover from illness and a delay in viral clearance compared to females. Lastly, route of exposure, sex, and age were found to influence the nature of the host inflammatory cytokine response, but they had a minimal effect on both the quality and durability of the humoral immune response as well as the susceptibility of hamsters to SARS-CoV-2 re-infection. Together, these data indicate that the route of exposure, sex, and age have a meaningful impact SARS-CoV-2 pathogenesis in hamsters and that these variables should be considered when designing pre-clinical challenge studies.


Subject(s)
Coronavirus Infections , Acute Disease , Severe Acute Respiratory Syndrome , Weight Loss , Attention Deficit and Disruptive Behavior Disorders , Death , COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.30.442182

ABSTRACT

LY-CoV1404 is a highly potent, neutralizing, SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody identified from a convalescent COVID-19 patient approximately 60 days after symptom onset. In pseudovirus studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.427/B.1.429, P.1, and B.1.526 and binds to these variants in the presence of their underlying RBD mutations (which include K417N, L452R, E484K, and N501Y). LY-CoV1404 also neutralizes authentic SARS-CoV-2 in two different assays against multiple isolates. The RBD positions comprising the LY-CoV1404 epitope are highly conserved, with the exception of N439 and N501; notably the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of variant binding, potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 is one in a panel of well-characterized, clinically developable antibodies that could be deployed rapidly to address current and emerging variants. New variant-resistant treatments such as LY-CoV1404 are desperately needed, given that some of the existing therapeutic antibodies are less effective or ineffective against certain variants and the impact of variants on vaccine efficacy is still poorly understood.


Subject(s)
COVID-19
8.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3726142

ABSTRACT

Until now, there is no approved effective vaccine, and antiviral therapeutic agents available for treatment or prevention of SARS-coronavirus 2 (SCoV-2) virus infection. In this study, we established a SCoV-2 Spike glycoprotein (SP) including an SP mutant D614G pseudotyped HIV-1-based vector system and tested their ability to infect ACE2-expressing cells. This study revealed that a C-terminal 17 amino acid deletion in SCoV-2 SP significantly increases the incorporation of SP into the pseudotyped viruses and enhanced its infectivity, which is valuable information for the design of SCoV2-SP-based vaccine strategies. Also, based on this system, we have demonstrated that an aqueous extract from the Chinese herb Prunella vulgaris (CHPV) displayed potent inhibitory effects on both SCoV-2 SP (including SPG614 mutant) pseudotyped virus (SCoV-2-SP-PVs) and SARS CoV SP-pseudotyped virus-mediated infections. Moreover, we have compared CHPV with another compound, Suramin, for their anti-SARS-CoV-2 activities and the mode of their actions, and found that both CHPV and Suramin are able to directly interrupt SCoV-2–SP binding to its receptor ACE2 and block the viral entry step. Importantly, our results also revealed that CHPV and Suramin were able to efficiently inhibit the wild type SARS-CoV-2 (hCoV-19/Canada/ON-VIDO-01/2020) virus infection in Vero cells. Furthermore, our results also demonstrated that the combination of CHPV/Suramin with an anti-SARS-CoV-2 neutralizing antibody mediated a more potent blocking effect against SCoV2-SP-PVs. Overall, this study provides pieces of strong evidence that CHPV and Suramin has anti-SARS-CoV-2 activity and may be developed as a novel antiviral approach, especially as nasopharynx agents, against SARS-CoV-2 infection.Funding: This work was supported by Canadian 2019 Novel Coronavirus (COVID-19) Rapid Research Funding (OV5-170710) by Canadian Institute of Health Research (CIHR) and Research Manitoba to X-J.Y and D.K.Conflict of Interest: The authors declare no competing interests.


Subject(s)
Coronavirus Infections , COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.270306

ABSTRACT

Until now, no approved effective vaccine and antiviral therapeutic are available for treatment or prevention of SARS-coronavirus 2 (SCoV-2) virus infection. In this study, we established a SCoV-2 Spike glycoprotein (SP), including a SP mutant D614G, pseudotyped HIV-1-based vector system and tested their ability to infect ACE2-expressing cells. This study revealed that a C-terminal 17 amino acid deletion in SCoV-2 SP significantly increases the incorporation of SP into the pseudotyped viruses and enhanced its infectivity, which may be helpful in the design of SCoV2-SP-based vaccine strategies. Moreover, based on this system, we have demonstrated that an aqueous extract from the Chinese herb Prunella vulgaris (CHPV) and a compound, suramin, displayed potent inhibitory effects on both wild type and mutant (G614) SCoV-2 SP pseudotyped virus (SCoV-2-SP-PVs)-mediated infection. The 50% inhibitory concentration (IC50) for CHPV and suramin on SCoV-2-SP-PVs are 30, and 40 g/ml, respectively. To define the mechanisms of their actions, we demonstrated that both CHPV and suramin are able to directly interrupt SCoV-2-SP binding to its receptor ACE2 and block the viral entry step. Importantly, our results also showed that CHPV or suramin can efficiently reduce levels of cytopathic effect caused by SARS-CoV-2 virus (hCoV-19/Canada/ON-VIDO-01/2020) infection in Vero cells. Furthermore, our results demonstrated that the combination of CHPV/suramin with an anti-SARS-CoV-2 neutralizing antibody mediated more potent blocking effect against SCoV2-SP-PVs. Overall, this study provides evidence that CHPV and suramin has anti-SARS-CoV-2 activity and may be developed as a novel antiviral approach against SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections , COVID-19 , Ichthyosis Vulgaris
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.25.221291

ABSTRACT

The zoonotic spillover of the pandemic SARS-coronavirus 2 (SARS-CoV-2) from an animal reservoir, currently presumed to be the Chinese horseshoe bat, into a naive human population has rapidly resulted in a significant global public health emergency. Worldwide circulation of SARS-CoV-2 in humans raises the theoretical risk of reverse zoonosis events with wildlife, reintroductions of SARS-CoV-2 into permissive non-domesticated animals, potentially seeding new host reservoir species and geographic regions in which bat SARS-like coronaviruses have not historically been endemic. Here we report that North American deer mice (Peromyscus maniculatus) and some closely related members of the Cricetidae family of rodents possess key amino acid residues within the angiotensin-converting enzyme 2 (ACE2) receptor known to confer SARS-CoV-2 spike protein binding. Peromyscus rodent species are widely distributed across North America and are the primary host reservoirs of several emerging pathogens that repeatedly spill over into humans including Borrelia burgdorferi, the causative agent of Lyme disease, deer tick virus, and Sin Nombre orthohantavirus, the causative agent of hantavirus pulmonary syndrome (HPS). We demonstrate that adult deer mice are susceptible to SARS-CoV-2 infection following intranasal exposure to a human isolate, resulting in viral replication in the upper and lower respiratory tract with little or no signs of disease. Further, shed infectious virus is detectable in nasal washes, oropharyngeal and rectal swabs, and viral RNA is detectable in feces and occasionally urine. We further show that deer mice are capable of transmitting SARS-CoV-2 to naive deer mice through direct contact. The extent to which these observations may translate to wild deer mouse populations remains unclear, and the risk of reverse zoonosis and/or the potential for the establishment of Peromyscus rodents as a North American reservoir for SARS-CoV-2 is unknown. Nevertheless, efforts to monitor wild, peri-domestic Peromyscus rodent populations are likely warranted as the SARS-CoV-2 pandemic progresses.


Subject(s)
COVID-19 , Hantavirus Pulmonary Syndrome
11.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-37057.v2

ABSTRACT

This study examined the effect of simulated sunlight on the viability of SARS-CoV-2 spiked into tissue culture medium or mucus. The study revealed that inactivation took 37 minutes in medium and 107 minutes in mucus. These times-to-inactivation were unexpected since they are longer than have been observed in other studies.

SELECTION OF CITATIONS
SEARCH DETAIL